Asymmetric Dihydroxylations of Enynes with a Trisubstituted $C=C$ Bond. An Unprecedented Route to γ-Lactone Building Blocks with a Quaternary **Stereocenter**

Heike Burghart-Stoll,[†] Tobias Kapferer,[‡] and Reinhard Brückner^{*,†}

Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstr. 21, 79104 Freiburg im Breisgau, Germany, and Bayer CropScience AG, Alfred-Nobel-Str. 50, 40789 Monheim, Germany

reinhard.brueckner@organik.chemie.uni-freiburg.de

Received October 1, 2010

LETTERS 2011 Vol. 13, No. 5

1016–1019

ORGANIC

ABSTRACT

En route to a comprehensive set of hydroxylactone building blocks (4R,5R)-, (4R,5S)-, (4S,5R)-, and (4S,5S)-5a, Sharpless asymmetric dihydroxylations of allylic chlorides (E)- and (Z)-9 were performed. They delivered the four stereoisomers of diol 10 with up to 92% ee and absolute configurations, which were proven to be in accordance with the Sharpless mnemonic.

Enantiomerically pure tetronic acids 1 , butenolides 2 , 2 and 3-methylidenebutanolides $3³$, all with a quaternary

10.1021/ol103061g © 2011 American Chemical Society Published on Web 01/27/2011

methyl-bearing stereocenter, form the core not only of a variety of natural products $1-3$ but also of analogs of pharmaceutical interest⁴ (Figure 1). In continuation of our interest in this kind of compound, which was aroused by establishing the configuration of a Plagiomnium lactone through synthesis, 5 we conceived sets of stereochemically homogeneous metal— $C=C$ -containing hydroxylactones 5 (L_nM = Bu₃Sn, pinacolB, Cp₂ClZr, etc.) and C=Ccontaining hydroxylactones 6 as versatile precursors of such structures. We intended to derive 5 via 6 from functionalized diols 7 and those from the isomeric pentenynols

[†] Albert-Ludwigs-Universität.

[‡]Bayer CropScience AG.

⁽¹⁾ For example, see: (a) Trifonov, L.; Bieri, J. H.; Prewo, R.; Dreiding, A. S.; Rast, D. M.; Hoesch, L. Tetrahedron 1982, 38, 397-403. (b) Andrade, R.; Ayer, W. A.; Trifonov, L. S. Aust. J. Chem. 1997, 50, 255–257. (c) Shirota, O.; Pathak, V.; Hossain, C. F.; Sekita, S.; Takatori, K.; Satake, M. J. Chem. Soc., Perkin Trans. 1 1997, 2961– 2964. (d) Abe, N.; Murata, T.; Hirota, A. Biosci. Biotechnol. Biochem. 1998, 62, 2120–2126. See also: Sperry, S.; Samuels, G. J.; Crews, P. J. Org. Chem. 1998, 63, 10011–10014. (e) Sugaya, K.; Koshino, H.; Hongo, Y.; Yasunaga, K.; Onose, J.-i.; Yoshikawa, K.; Abe, N. Tetrahedron Lett. 2008, 49, 654–657.

⁽²⁾ For example, see: (a) Sunazuka, T.; Obata, R.; Zhuorong, L.; Takamatsu, S.; Komiyama, K.; Ômura, S.; Smith, A. B., III. Tetrahedron Lett. 1994, 35, 2635-2636. (b) Bell, P. J. L.; Karuso, P. J. Am. Chem. Soc. 2003, 125, 9304–9305. (c) Stierle, D. B.; Stierle, A. A.; Bugni, T. J. Org. Chem. 2003, 68, 4966–4969. (d) Mulholland, D. A.; McFarland, K.; Randrianarivelojosia, M.; Rabarison, H. Phytochemistry 2004, 65, 2929–2934. (e) Tu, L.; Zhao, Y.; Yu, Z.-Y.; Cong, Y.-W.; Xu, G.; Peng, L.-Y.; Zhang, P.-T.; Cheng, X.; Zhao, Q.-S. Helv. Chim. Acta 2009, 91, 1578–1587.

⁽³⁾ For example, see: (a) Zampella, A.; Giannini, C.; Debitus, C.; D'Auria, M. V. Tetrahedron 2001, 57, 257-263. (b) Kanayama, M.; Nishiwaki, K.; Matsuo, K. Heterocycles 2006, 68, 233–236.

⁽⁴⁾ For example, see: (a) Bühler, H.; Bayer, A.; Effenberger, F. Chem.—Eur. J. 2000, 6, 2564–2571. (b) Tan, L.; Chen, C.-y.; Chen, W.; Frey, L.; King, A. O.; Tillyer, R. D.; Xu, F.; Zhao, D.; Grabowski, E. J. J.; Reider, P. J.; O'Shea, P.; Dagneau, P.; Wang, X. Tetrahedron 2002, 58, 7403–7410. (c) Toyama, K.-i.; Tauchi, T.; Mase, N.; Yoda, H.; Takabe, K. Tetrahedron Lett. 2006, 47, 7163–7166; corrigendum 8793.

Figure 1. Retrosynthetic analysis of tetronic acids 1, butenolides 2, and methylidenebutanolides 3, all with a quaternary methylbearing stereocenter at C-5.

Scheme 1. Stereoselective Syntheses of Chlorides (E) - and (Z) -9 (Isomeric Purity of All Compounds >99:1)

 (E) - and (Z) -8. The latter are [1,3]-rearrangement products⁶ of alcohol 4, which result from the 1,2-addition of metal acetylides to methylvinylketone⁷ or to cyclopentadiene-protected methylvinylketone⁸ (followed by a $[2 + 4]$) cycloreversion). The originally obtained 15:85 (E)-8/(Z)-8 mixture⁹ can be separated by careful distillation.^{9a,10} The resulting isomers or the mentioned mixture are established C_6 building blocks for the synthesis of oligoterpenes.¹¹

We began by converting the allyl alcohols (E) - and (Z) -8 into the corresponding chlorides (E)- (70% yield) and (Z)-9 (58% yield), respectively, by the nonoxidizing variant of the Corey-Kim reaction (Scheme 1).¹² We are unaware of

(9) (a) Mori, K.; Ohki, M.; Sato, A.; Matsui, M. Tetrahedron 1972, 28, 3739–3745. (b) Zacharuas, M. T.; Pushpakumari, T.; Sreevalsan, S. V.; Pillai, G. N. Indian J. Chem. 1991, 30B, 59–62.

(10) Oroshnik, W. J. Am. Chem. Soc. 1956, 78, 2651–2652.

(11) For example, see: (a) Isler, O.; Ronco, A.; Huber, W.; Kofler, M. Helv. Chim. Acta 1947, 30, 1911–1927. (b) Manchard, P. S.; Rüegg, R.; Schwieter, U.; Siddons, P. T.; Weedon, B. C. L. J. Chem. Soc. 1965, 2019–2026. (c) Davies, A. J.; Khare, A.; Mallams, A. K.; Massy-Westtropp, R. A.; Moss, G. P.; Weedon, B. C. L. J. Chem. Soc., Perkin Trans. 1 1984, 2147–2157. (d) Pattenden, G.; Robson, D. C. Tetrahedron Lett. 1987, 28, 5751–5754.

(12) Method: Corey, E. J.; Kim, C. U.; Takeda, M. Tetrahedron Lett. 1972, 4339–4342.

another synthesis of 9 from 8 or of any prior selective preparation of (E) -9 at all. Only (Z) -9 has been described but not its isomeric purity; it was prepared from alcohol 4.¹³

Asymmetric Sharpless dihydroxylations¹⁴ of (E) -9 using AD-mix α or β^{15} and stoichiometric MeSO₂NH₂ led to incomplete conversions (15% after 8 d and 19% after 3 d, respectively) and less satisfactory ee values (69% and 83%, respectively). Accordingly we varied the amount of $K₂OsO₂(OH)₄$ [between 0.2 mol % (in the AD-mixes) and 2.0 mol $\%$], the amount of phthalazine ligand [between 1.0 mol $\%$ (in the AD-mixes) and 10 mol $\%$], and the ratio of these reagents [going from 0.2 (in the ADmixes) to 1.0]. Employing 1.0 mol % of $K_2OsO_2(OH)_4$ and 2.0 mol % of the phthalazine ligand resulted in the asymmetric dihydroxylation ("AD") giving better yields (Scheme 2). With (DHQ) ₂PHAL as the ligand stereocontrol reached 85% ee¹⁶ (64% yield), but using $(DHQD)_{2}$ -PHAL we obtained up to 92% ee^{16} (69% yield). ADs of the same chloride (E) -9 in the presence of 1.0 mol $\%$ of $K_2OsO₂(OH)₄$ and 2.0 mol % of the anthraquinones $(DHQ)_2AQN$ or $(DHQD)_2AQN$ ¹⁷ furnished 73% and 86% yields of the diol, respectively. Enantiocontrol dropped to 54% ee¹⁶ in the former case but matched the $(DHQD)_{2-}$ PHAL value in the latter (92% ee^{16}).

The same ligands mediated ADs of allylic chloride (Z) -9 (Scheme 3). Enantiocontrol was ca. 90% ee, but yields were only 41 and 47% with the PHAL-containing and 22-23% with the AQN-containing ligands. Since the substrate was completely consumed (as indicated by TLC) we assume that it suffered some competing hydrolysis.¹⁸ This would have led via pentenynol 8 to a triol sufficiently polar that it could have escaped our monitoring and workup procedures.

The only previous attempt of subjecting an allylic chloride with a trisubstituted $C=C$ bond to an AD reaction

⁽⁵⁾ Kapferer, T.; Brückner, R.; Herzig, A.; König, W. A. Chem.-Eur. J. 2005, 11, 2154–2162.

⁽⁶⁾ Cymerman, J.; Heilbron, I. M.; Jones, E. R. H. J. Chem. Soc. 1945, 90–94.

^{(7) (}a) Hennion, G. F.; Lieb, D. J. J. Am. Chem. Soc. 1944, 66, 1289– 1290. (b) Jung,M. E.; Duclos, B. A. Tetrahedron Lett. 2004, 45, 107–109.

⁽⁸⁾ Pasedach, H. U.S. Patent 2879308, 1959; Chem. Abstr. 1959, 53, 18889c.

^{(13) (}a) Surmatis, J. D. U.S. Patent 2760998, 1956; Chem. Abstr. 1956, 50, 8705i. (b) Santelli, M.; Bertrand, M. Bull. Soc. Chim. Fr. 1973, 2331– 2335. (c) Preparation of an (E) -9/(Z)-9 mixture from alcohol 4: ref 9a.

⁽¹⁴⁾ Recent reviews: (a) Kolb, H. C.; Sharpless, K. B. In Transition Metals for Organic Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2004; pp 275-298; Vol. 2. (b) Noe, M. C.; Letavic, M. A.; Snow, S. L.; McCombie, S. Org. React. 2005, 66, 109-625. (c) Zaitsev, A. B.; Adolfsson, H. Synthesis 2006, 1725–1756.

^{(15) (}a) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768–2771 (in the presence of $MeSO_2NH_2$). (b) Footnote 6 in Jeong, K.-S.; Sjö, P.; Sharpless, K. B. Tetrahedron Lett. 1992, 33, 3833–3836 (in the absence of MeSO₂NH₂).

⁽¹⁶⁾ The enantiopurity of this compound was determined by GLC after acetonide formation (for details see Supporting Information).

⁽¹⁷⁾ Becker, H.; Sharpless, K. B. Angew. Chem. 1996, 108, 447–449. Angew. Chem., Int. Ed. Engl. 1996, 35, 448–451.

Scheme 3. Asymmetric Dihydroxylations of Allylic Chloride (Z)-9 in the Presence of Buffer (NaHCO₃/K₂CO₃) and Me- $SO₂NH₂$

Scheme 4. Attempted Asymmetric Dihydroxylation of Prenyl Chloride in the Presence of Buffer (NaHCO₃/K₂CO₃) and $MeSO₂NH₂¹⁹$

affected prenyl chloride (Scheme 4).¹⁹ This rendered none of the expected chlorodiol 12 yet 50% of the dihydroxylation product 14 (absolute configuration uncertain) of the surmised in situ hydrolysates 13 and *iso*-13. Apart from our own results ADs of allylic chlorides seem to be limited to the parent compound (i.e., allyl chloride²⁰) and to derivatives with a *trans*-disubstituted C=C bond.²¹

The isomeric chlorodiols 10 were C_1 elongated with KCN and crown ether²² giving the cyanodiols 15 shown in Schemes 5 and 6. When the latter compounds were treated with concentrated hydrochloric acid, they rendered

(20) Kolb, H. C.; Bennani, Y. L.; Sharpless, K. B. Tetrahedron: Asymmetry 1993, 4, 133–141.

Scheme 5. Elaboration of the *ul*-Configured Chlorodiols $(2R,3S)$ - and $(2S,3R)$ -10 into Two Sets of lk-Configured tert-Lactone Building Blocks 6 and 5a

Scheme 6. Elaboration of the *lk*-Configured Chlorodiols $(2R,3R)$ - and $(2S,3S)$ -10 into Two Sets of ul-Configured tert-Lactone Building Blocks 6 and 5a

a stereochemically comprehensive set of $C=C$ -containing hydroxylactones 6. These were hydrostannylated 23 furnishing the Bu_3Sn ⁻C=C-containing hydroxylactones 5a *trans*-selectively. The lk -configured hydroxylactones $5a$ resulted with 100:0 regioselectivities (Scheme 5), but their ul-configured counterparts as 86:14 mixtures (Scheme 6). Further elaboration of these building blocks is under study.

One enantiomer of each diastereomer of the Bu_3Sn C=C-containing hydroxylactones 5a was elaborated further by cross-coupling with $trans-1$ -iodobut-2-ene²⁴ (Scheme 7). Standard Stille couplings 25 suffered from loss of the configurational integrity of the ethyl-substituted $C=C$ bond. The Pd-free alternative²⁶ ("Liebeskind coupling") in the presence of 1.5 equiv of Cu(I) thiophene-2-carboxylate accomplished these transformations selectively ($0^{\circ}C \rightarrow$ room temp, ≤ 30 min). The diene-substituted hydroxylactones $(-)$ - $(4R,5R)$ and $(-)$ -(4R,5S)-16 resulted in yields of 68% and 95%, respectively.

We proved the configurational assignments of Schemes 2, 3, and 5-7 for one AD per allylic chloride. The bis(4 bromobenzoate) 17 of the AD product $(+)$ - $(2S,3R)$ -10 of allylic chloride (E) -9 crystallized so that its stereostructure could be unraveled by anomalous X-ray diffraction

⁽¹⁸⁾ Product loss through epoxide formation appears to be an unlikely alternative since we dihydroxylated in the presence of a buffer (NaHCO₃/K₂CO₃). This is common^{19,21a,21b,21f^{-21i,21k} yet not compul-} sory (footnote 4 in ref 19; ref $21c-e,j$) in such cases.

⁽¹⁹⁾ Vanhessche, K. P. M.; Wang, Z.-M.; Sharpless, K. B. Tetrahedron Lett. 1994, 35, 3469–3472.

⁽²¹⁾ For example, see: (a) Yoshimitsu, T.; Song, J. J.; Wang, G.-Q.; Masamune, S. J. Org. Chem. 1997, 62, 8978–8979. (b) Marshall, J. A.; Jiang, H. Tetrahedron Lett. 1998, 39, 1493–1496. (c) Kobayashi, Y.; Nakayama, Y.; Yoshida, S. Tetrahedron Lett. 2000, 41, 1465–1468. (d) Kobayashi, Y.; Yoshida, S.; Nakayama, Y. Eur. J. Org. Chem. 2001, 1873–1881. (e) Mayer, S. F.; Steinreiber, A.; Orru, R. V. A.; Faber, K. J. Org. Chem. 2002, 67, 9915–9121. (f) Chun, J.; Byun, H.-S.; Bittman, R. J. Org. Chem. 2003, 68, 348–354. (g) Plietker, B. Org. Lett. 2004, 6, 289–291. (h) Yadav, J. S.; Rajaiah, G. Synlett 2004, 1743–1746. (i) Kumar, P.; Naidu, S. V. J. Org. Chem. 2005, 70, 4207-4210. (j) Faveau, C.; Mondon, M.; Gesson, J.-P.; Mahnke, T.; Gebhardt, S.; Koert, U. Tetrahedron Lett. 2006, 47, 8305–8308. (k) Li, X.; Manjunatha, U. H.; Goodwin, M. B.; Knox, J. E.; Lipinski, C. A.; Keller, T. H.; Barry, C. E.; Dowd, C. S. Bioorg. Med. Chem. Lett. 2008, 2256–2262.

⁽²²⁾ Procedure: Groza, N. V.; Ivanov, I. V.; Romanov, S. G.; Myagkova, G. I.; Nigam, S. Tetrahedron 2002, 58, 9859–9863.

⁽²³⁾ Procedure: Betzer, J.-F.; Delaloge, F.; Muller, B.; Pancrazi, A.; Prunet, J. J. Org. Chem. 1997, 62, 7768–7780.

⁽²⁴⁾ trans-1-Iodobut-2-ene was prepared in 50% yield (63%: Alexakis, A.; Duffault, J. M. Tetrahedron Lett. 1988, 29, 5243-6246) from but-1-yne by successive treatments with DIBAH and iodine.

⁽²⁵⁾ Stille, J. K. Angew. Chem. 1986, 98, 504–519. Angew. Chem., Int. Ed. Engl. 1986, 25, 508–524. Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1–652.

⁽²⁶⁾ Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 2748–2749. Related earlier observations:Falck, J. R.; Bhatt, R. K.; Ye, J. J. Am. Chem. Soc. 1995, 117, 5973–5982.

Scheme 7. Liebeskind Couplings of Diastereomeric tert-Lactone Building Blocks (-)-($4R,5R$)- and (+)-($4R,5S$)- $5a^a$

 $a^a95%$ yield was calculated referring to the alkenylstannane precursor, which contains the *trans*-disubstituted $C=C$ bond. The yield of $(-)$ -(4R,5S)-16 relative to the total amount of the two alkenylstannane substrates was 82%.

Scheme 8. Absolute Configuration of One of the ul-Configured Chlorodiols 10

(Scheme 8). The proof of the absolute configuration of AD-product $(+)$ - $(2S,3S)$ -10 of allylic chloride (Z) -9 focused on its tertiary stereocenter. It was incorporated in a sevenstep sequence²⁷ in the optically active lactone $(-)$ -(S)-18 with a single stereocenter (Scheme 9). Its 3D structure became clear when its antipode $(+)$ - (R) -18 resulted in seven analogous steps²⁷ from chlorodiol $(+)$ - $(2S,3R)$ -10, the configuration of which had been elucidated after the esterification shown in Scheme 8.

The steric course of the AD reactions of pentenynyl chlorides (E) - and (Z) -9 concurs with the outcome of ADs of allylic chlorides where the steric course was not just postulated (e.g., refs 19 and 21a,c,d,g,j) but evidenced by X-ray crystallography, identification with independently synthesized reference compounds, conversion into natural products of established stereostructure, or NMR analysis of diastereomeric derivatives.^{21b,e,f,h,i,k,28} It should be emphasized that the *diag*nosis of such a stereochemical analogy is only meaningful if the following presupposition is made: in the transition state of the AD of an allylic chloride with either a tri- or disubstituted $C=C$ bond, the orientation of the only C_{sp2} -H bond in the former substrate or the orientation

Scheme 9. Determination of the Absolute Configuration of One of the lk-Configured Chlorodiols 10 (Top Row)

Figure 2. Facial selectivity of the AD of allylic chlorides. A common stereochemical control element for substrates with a trisubstituted C=C bond (left) and a disubstituted C=C bond (right) is highlighted.

of any one of the two C_{sp2} -H bonds in the latter substrate determines the facial selectivity of attack by a Sharpless-type $OsO₄ complex$. Figure 2 underscores this point. This selectivity conforms with the stereoselectivity, which the "Sharpless mnemonic" predicts for the ADs of all kinds of substrates with a trisubstituted or a trans-disubstituted C=C bond.²⁹

Disconcertingly, our stereoselectivities $(E)-9 + AD$ -mix $\alpha \rightarrow (2R,3S)$ -10 and (Z)-9 + AD-mix $\alpha \rightarrow (2R,3R)$ -10 were the exact opposite of what was reported for the ADs of some ethers, which share a methylated pentenynyl unit with our substrates.³⁰ These inconsistencies are the subject of the following paper and resolved therein.

Acknowledgment. The authors thank Dr. Jens Geier (Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg) for the X-ray analysis and Dr. Thomas Netscher (DSM, Basel) for donations of both (E) - and (Z) -8.

Supporting Information Available. Experimental procedures, characterization data, copies of gas chromatograms, and copies of NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽²⁷⁾ Burghart-Stoll, H.; Brückner, R. Manuscript in preparation. It is unlikely that the transformations of Scheme 9 are the shortest conceivable stereochemical correlation between the chlorodiols $(+)$ - $(2S,3S)$ -10 and $(+)$ - $(2S,3R)$ -10. However, for reasons beyond the present context we needed a nonracemic sample of lactone 18. What mattered was the efficiency of the route and not the configuration of 18. At some point we had converted $(+)$ - $(2S,3S)$ -10 into levorotatory 18 and $(+)$ -(2S,3R)-10 into dextrorotatory 18. These transformations provided the latest stereochemical information for completing the configurational assignments of the present study as a spin-off result.

⁽²⁸⁾ Richardson, T. I.; Rychnovsky, S. D. J. Org. Chem. 1996, 61, 4219–4231.

^{(29) (}a) Jacobsen, E. N.; Markó, I.; Mungall, W. S.; Schröder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968–1970. (b) Sharpless, K. B.; Amberg, W.; Beller, M.; Chen, H.; Hartung, J.; Kawanami, Y.; Lübben, D.; Manoury, E.; Ogino, Y.; Shibata, T.; Ukita, T. J. Org. Chem. 1991, 56, 4585–4588. (c) Reference 15b. (d) Kolb, H. C.; Andersson, P. G.; Sharpless, K. B. J. Am. Chem. Soc. 1994, 116, 1278–1291.

^{(30) (}a) Tietze, L. F.; Görlitzer, J. Liebigs Ann. Recl. 1997, 2221-2225. (b) Tietze, L. F.; Görlitzer, J. Synthesis 1997, 877-885.